Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(26): 69150-69164, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37133655

RESUMO

Understanding the immediate impacts of oil spills is essential to recognizing their long-term consequences on the marine environment. In this study, we traced the early (within one week) signals of crude oil in seawater and plankton after a major oil spill in October 2019 in the Red Sea. At the time of sampling, the plume had moved eastward, but we detected significant signs of incorporation of oil carbon into the dissolved organic carbon pool, resulting in a 10-20% increase in the ultraviolet (UV) absorption coefficient (a254) of chromophoric dissolved organic matter (CDOM), elevated oil fluorescence emissions, and depletion of the carbon isotope composition (δ13C) of the seawater. The abundance of the picophytoplankton Synechococcus was not affected, but the proportion of low nucleic acid (LNA) bacteria was significantly higher. Moreover, specific bacterial genera (Alcanivorax, Salinisphaera, and Oleibacter) were enriched in the seawater microbiome. Metagenome-assembled genomes (MAGs) suggested that such bacteria presented pathways for growing on oil hydrocarbons. Traces of polycyclic aromatic hydrocarbons (PAHs) were also detected in zooplankton tissues, revealing the rapid entry of oil pollutants into the pelagic food web. Our study emphasizes the early signs of short-lived spills as an important aspect of the prediction of long-term impacts of marine oil spills.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Synechococcus , Poluentes Químicos da Água , Poluição por Petróleo/análise , Plâncton/metabolismo , Petróleo/análise , Oceano Índico , Água do Mar/microbiologia , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise
2.
Chemosphere ; 259: 127487, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32650165

RESUMO

Polycyclic Aromatic Hydrocarbons (PAHs) have elicited increasing concern due to their ubiquitous occurrence in coastal marine environments and resultant toxicity in organisms. Due to their lipophilic nature, PAHs tend to accumulate in phytoplankton cells and thus subsequently transfer to other compartments of the marine ecosystem. The intrinsic fluorescence properties of PAHs in the ultraviolet (UV)/blue spectral range have recently been exploited to investigate their uptake modes, localization, and aggregation in various biological tissues. Here, we quantitatively evaluate the sorption of two model PAHs (phenanthrene and pyrene) in three marine phytoplankton species (Chaetoceros tenuissimus, Thalassiosira sp. and Proteomonas sp.) using a combined approach of UV excitation flow cytometry and fluorescence microscopy. Over a 48-h exposure to a gradient of PAHs, Thalassiosira sp. showed the highest proportion of PAH-sorbed cells (29% and 97% of total abundance for phenanthrene and pyrene, respectively), which may be attributed to its relatively high total lipid content (33.87 percent dry weight). Moreover, cell-specific pulse amplitude modulation (PAM) microscope fluorometry revealed that PAH sorption significantly reduced the photosynthetic quantum efficiency (Fv/Fm) of individual phytoplankton cells. We describe a rapid and precise hybrid method for the detection of sorption of PAHs on phytoplankton cells. Our results emphasize the ecologically relevant sub-lethal effects of PAHs in phytoplankton at the cellular level, even at concentrations where no growth inhibition was apparent. This work is the first study to address the cell-specific impacts of fluorescent toxicants in a more relevant toxicant-sorbed subpopulation; these cell-specific impacts have to date been unidentified in traditional population-based phytoplankton toxicity assays.


Assuntos
Fitoplâncton/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Análise de Célula Única/métodos , Absorção Fisico-Química , Ecossistema , Citometria de Fluxo/métodos , Microscopia de Fluorescência/métodos , Fenantrenos/química , Fenantrenos/farmacocinética , Fitoplâncton/citologia , Fitoplâncton/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/farmacocinética , Pirenos/química , Pirenos/farmacocinética , Raios Ultravioleta
3.
Ecotoxicol Environ Saf ; 196: 110511, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32247239

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are widespread pollutants in marine ecosystems including threatened and potentially sensitive coral reefs. Lower organisms such as phytoplankton, known to bioconcentrate PAHs, could serve as potential entry points for these chemicals into higher trophic levels. Here, we present a novel method using a 13C-labelled PAH and cavity ring-down spectroscopy (CRDS) to investigate accumulation, uptake rates and trophic transfer of PAHs in corals, which are key organisms to sustain biodiversity in tropical seas. We quantified the accumulation of 13C-phenanthrene in the marine microalga Dunaliella salina, and in the coral Acropora millepora after diffusive uptake from seawater or dietary uptake via labelled D. salina. Additionally, we monitored the photophysiological health of D. salina and A. millepora during phenanthrene exposure by pulse-amplitude modulation (PAM) fluorometry. Dose-dependent accumulation of 13C-phenanthrene in the microalga showed a mean bioconcentration factor (BCF) of 2590 ± 787 L kg-1 dry weight. Corals accumulated phenanthrene from both exposure routes. While uptake of 13C-phenanthrene in corals was faster through aqueous exposure than dietary exposure, passive diffusion showed larger variability between individuals and both routes resulted in accumulation of similar concentrations of phenanthrene. The 13C-PAH labelling and analysis by CRDS proved to be a highly sensitive method. The use of stable isotopic label eliminated additional toxicity and risks by radioactive isotopic-labelling, and CRDS reduced the analytical complexity of PAH (less biomass, no extraction, fast analysis). The simultaneous, precise quantification of both carbon content and 13C/12C ratio (δ13C) enabled accurate determination of 13C-phenanthrene accumulation and uptake rate. This is the first study to provide empirical evidence for accumulation of phenanthrene in a phytoplankton-coral food chain.


Assuntos
Antozoários/metabolismo , Bioacumulação/efeitos dos fármacos , Fenantrenos/metabolismo , Fitoplâncton/metabolismo , Água do Mar/química , Poluentes Químicos da Água/metabolismo , Animais , Antozoários/química , Isótopos de Carbono , Ecossistema , Cadeia Alimentar , Fenantrenos/análise , Fitoplâncton/química , Análise Espectral , Poluentes Químicos da Água/análise
4.
Sci Rep ; 9(1): 15323, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653882

RESUMO

The freshwater flagellate alga Euglena agilis Carter was exposed to the polycyclic aromatic hydrocarbon (PAH) anthracene for 96 h under optimal photosynthetically active radiation (PAR), and responses of growth, photosynthetic pigment production, and photosynthetic efficiency were assessed. Anthracene reduced the growth rate (µ) and levels of chlorophyll a (Chl a), chlorophyll b (Chl b), and total carotenoids. The growth rate was more sensitive than photosynthetic parameters, with a median effective concentration (EC50) of 4.28 mg L-1. Between 5 and 15 mg L-1, anthracene inhibited the maximum quantum yield (Fv/Fm) of photosystem II (PSII) and the maximum photosynthetic electron transport rate through PSII (rETRmax) with EC50 values of 14.88 and 11.8 mg L-1, respectively. At all anthracene concentrations, intracellular reactive oxygen species (ROS) were elevated, indicating increased oxidative stress. Anthracene presumably reduced the PSII efficiency of photochemical energy regulation and altered the photochemistry through intracellular ROS formation. Acute exposure to PAHs may induce severe physiological changes in phytoplankton cells, which may influence vital ecological processes within the aquatic environments. Additionally, growth and Chl a content may serve as sensitive risk assessment parameters of anthracene toxicity in water management since EC50 values for both overlap with anthracene levels (8.3 mg L-1) permitted by the US Environmental Protection Agency (USEPA).


Assuntos
Antracenos/toxicidade , Euglena/efeitos dos fármacos , Água Doce , Proliferação de Células/efeitos dos fármacos , Dimetil Sulfóxido/farmacologia , Euglena/citologia , Fluoresceínas/metabolismo , Fluorescência , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Pigmentos Biológicos/metabolismo , Solventes
5.
Environ Pollut ; 239: 607-616, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29704673

RESUMO

In this study, we investigated the in situ responses of Red Sea picophytoplankton, the dominant phytoplankton group in the oligotrophic ocean, to two toxic polycyclic aromatic hydrocarbons (PAHs), phenanthrene and pyrene. The experiments were conducted across a latitudinal gradient of the Saudi Arabian Red Sea, an area sensitive to oil pollution. We observed significant adverse effects on the growth and abundance of the picocyanobacteria Synechococcus and picoeukaryotes, at all stations sampled. Prochlorococcus, which was abundant only at one of the stations, also appeared to be affected. Pyrene was found to be more toxic to phytoplankton at all stations. In general, picoeukaryotes exhibited higher sensitivity to PAHs than Synechococcus. Populations in the highly oligotrophic Northern region of the Red Sea were more tolerant to PAHs, presumably influenced by the natural selection of more resistant strains of phytoplankton due to the prolonged exposure to PAHs. Toxicity threshold values estimated here are higher than those reported for picophytoplankton from other oligotrophic marine waters and exceed by far the natural levels of PAHs in many oceans. Our findings reveal a possible adaptation of picophytoplankton populations to oil-related contaminants, which may clearly influence their spatial distribution patterns in the Red Sea.


Assuntos
Monitoramento Ambiental , Fitoplâncton/fisiologia , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Oceano Índico , Fitoplâncton/crescimento & desenvolvimento , Prochlorococcus , Pirenos , Arábia Saudita , Synechococcus
6.
J Photochem Photobiol B ; 141: 154-69, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25463663

RESUMO

Cyanobacteria are the dominant photosynthetic prokaryotes from an ecological, economical, or evolutionary perspective, and depend on solar energy to conduct their normal life processes. However, the marked increase in solar ultraviolet radiation (UVR) caused by the continuous depletion of the stratospheric ozone shield has fueled serious concerns about the ecological consequences for all living organisms, including cyanobacteria. UV-B radiation can damage cellular DNA and several physiological and biochemical processes in cyanobacterial cells, either directly, through its interaction with certain biomolecules that absorb in the UV range, or indirectly, with the oxidative stress exerted by reactive oxygen species. However, cyanobacteria have a long history of survival on Earth, and they predate the existence of the present ozone shield. To withstand the detrimental effects of solar UVR, these prokaryotes have evolved several lines of defense and various tolerance mechanisms, including avoidance, antioxidant production, DNA repair, protein resynthesis, programmed cell death, and the synthesis of UV-absorbing/screening compounds, such as mycosporine-like amino acids (MAAs) and scytonemin. This study critically reviews the current information on the effects of UVR on several physiological and biochemical processes of cyanobacteria and the various tolerance mechanisms they have developed. Genomic insights into the biosynthesis of MAAs and scytonemin and recent advances in our understanding of the roles of exopolysaccharides and heat shock proteins in photoprotection are also discussed.


Assuntos
Cianobactérias/efeitos da radiação , Raios Ultravioleta , Antioxidantes/química , Antioxidantes/metabolismo , Proteínas de Bactérias/metabolismo , Cianobactérias/metabolismo , Cicloexanonas/química , Cicloexanonas/metabolismo , Dano ao DNA/efeitos da radiação , Proteínas de Choque Térmico/metabolismo , Indóis/química , Indóis/metabolismo , Fenóis/química , Fenóis/metabolismo , Polissacarídeos Bacterianos/biossíntese , Estresse Fisiológico/efeitos da radiação
7.
Aquat Toxicol ; 155: 9-14, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24953851

RESUMO

Phenol, a monosubstituted aromatic hydrocarbon with various commercial uses, is a major organic constituent in industrial wastewaters. The ecotoxic action of phenol for aquatic environment is well known. In this study, rapid phenol toxicity tests (1h) were developed based on chlorophyll a (Chl a) fluorescence and the movement parameters of the freshwater flagellate, Euglena agilis Carter. Phenol significantly reduced the maximum quantum yield (Fv/Fm) of photosystem II (PS II) and the maximum photosynthetic electron transport rate (rETRmax) with median effective concentration (EC50) values of 8.94 and 4.67 mM, respectively. Phenol reduced the motility and triggered change in the swimming velocity of the test organism. Among the parameters tested, velocity was the most sensitive biomarker with an EC50 of 3.17 mM. The EC50 values for Fv/Fm, motility, and velocity appear to overlap the permitted levels of phenol. In conclusion, the photosynthesis and movement of E. agilis can be fast and sensitive risk assessment parameters for the evaluation of phenol toxicity in municipal and industrial effluents.


Assuntos
Euglena/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Fenol/toxicidade , Fotossíntese/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Relação Dose-Resposta a Droga , Euglena/fisiologia , Água Doce/análise , Fenol/administração & dosagem , Fotossíntese/fisiologia , Fatores de Tempo , Testes de Toxicidade/métodos , Poluentes Químicos da Água/administração & dosagem
8.
Aquat Toxicol ; 122-123: 206-13, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22832280

RESUMO

The effects of ultraviolet B (UV-B; 295-320 nm) radiation on certain vital physiological (photosynthesis), biochemical (production of reactive oxygen species - ROS) and behavioral (motility and orientation) characteristics were investigated in the unicellular photoautotroph, Euglena agilis Carter. The photosynthetic performance of E. agilis was recorded after exposure of between 15 and 60 min followed by a period of recovery lasting 6-24h under dim light (5-10 µmol photons m(-2) s(-1)). The maximum quantum yield of PS II (F(v)/F(m)) was reduced to 65% and 14% of initial values immediately following 15 and 30 min UV-B exposure, but recovered to 100 and 86% of the initials, respectively. Values of rETR(max) in E. agilis exposed to 15 min UV-B were similar to those of the initials, but a 30 min UV exposure resulted in 75% reduction of rETR(max) with only a 43% recovery as compared with the initial after 24h recovery. After a 60 min UV-B exposure, there were no Chl a fluorescence signals, and hence no F(v)/F(m) or rETR(max). A UV dose-dependent increase in DCFH-DA fluorescence was found in E. agilis cells, reflecting an increase in ROS production. After exposures to UV-B for between 15 and 60 min, the percentages of motile cells in the population decreased to 76, 39 and 15%, respectively. Following 24h in dim light, the percentage of motile cells increased to between 66% and 95% of the initial value. The velocity of non-irradiated cells was 60 µm s(-1), which decreased to 16-35 µm s(-1) immediately following exposure for 15-60 min. After periods of time in dim light (6, 12 and 24h) velocities had recovered to between 44 and 81% of the initial value. In untreated controls, the r-value was 0.23, indicating random movement of E. agilis, but it increased to 0.35 and 0.72 after exposure to UV-B for 30 and 60 min, respectively. There was a tendency towards vertical downward movement of cells proportional to the duration of exposure. The compactness of E. agilis decreased from 2.9 in controls to 1.8-2.3 in cells treated with UV-B although significant recovery followed. UV-B dose-dependent interaction between photosynthetic activity, ROS production and movement is discussed in terms of a UV-protective mechanism in E. agilis.


Assuntos
Euglena/efeitos da radiação , Fotossíntese/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta , Água Doce , Movimento/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...